

Data-based decision making (DBDM)

- The use of data, such as assessment results, to improve education (Schildkamp & Kuiper, 2010)
 - Systematically collect
 - Analyze and interpret data
 - Use this information to improve education

- Quantitative data and qualitative data
- Examples of data: demographic data, classroom observations, student surveys, parent interviews, assessment results

UNIVERSITY OF TWENTE.

Step 1: Problem definition

- Identify a current problem in the school
 - School-wide or subject-specific
- Prove that you have a problem
 - Collect data on current situation and desired situation
 - Three cohorts/years
- Example:
 - Current situation: '45% of our students is failing mathematics'
 - Desired situation: 'Next year no more than 30% of our students is failing, the year after that no more than 15%.'

datateams

Step 1 our problem definition

'We are not satisfied with the number of students repeating the fourth grade of secondary education. Over the last three years, on average 20% of our students had to repeat the fourth grade (N=135)

Next year, we want to achieve that no more than 15% of our students have to repeat the fourth grade, and the year after that this should be no more than 10%.'

Step 2: Formulating hypothesis

- Brainstorm possible causes
 - Ask colleagues for input
 - Make a list
- Choose a hypothesis
 - Based on criteria, such as: what can we influence as a school? Which hypothesis do a lot of colleagues believe to be true? What is according to the literature a possible cause?
- Formulate a hypothesis
 - Concrete
 - Measurable

datateams

Assignment step 2

- In groups of three
- You are working in a data team on the following problem:
 - 'We are not satisfied with the number of students repeating the fourth grade of secondary education. Over the last three years, on average 20% of our students had to repeat the fourth grade (N=135). Next year, we want to achieve that no more than 15% of our students have to repeat the fourth grade, and the year after that this should be no more than 10%.'
- Discuss possible causes of this problem, and make a list of possible causes
- Choose one possible cause, and try to make it measurable

Step 2 our hypothesis

'Students who repeat the fourth grade are significantly less (at least one point on a five point scale) motivated than students who do not repeat the fourth grade.'

datateams

Step 3: Data collection

- Available data
- Existing instruments
- Quantitative and qualitative

- Examples:
 - · Student achievement data
 - Surveys: motivation, feedback, curriculum coherence
 - Classroom observations
 - Student interviews, teacher interviews

Step 4: Data quality check

- Reliability and validity of the data
- Crucial step: not all available data are reliable and/or valid!
- Examples:
 - Validity problems with survey
 - Missing data
 - Data of one year only

datateams

Step 5: Data analysis

- Qualitative and quantitative
- From simple to complex
- Extra support needed: course data analysis
- Examples:
 - Average, standard deviation
 - Percentages
 - Comparing two groups: t-test
 - Qualitative analyses of interviews and observations

Step 6: Interpretation and conclusions

- Is our hypothesis rejected or confirmed?
 - Rejected: go back/ further to step 2
 - Accepted: continue with step 7
- 32 data teams (2012-2014):
 - 33 hypotheses: accepted
 - 45 hypotheses: rejected
 - 13 (qualitative) research questions
 - 13 hypotheses: no conclusion due to limitations of the dataset

datateams

Step 7: Implementing measures

- Develop an action plan:
 - Smart goals
 - Task division and deadlines
 - Means
- Monitoring progress: how, who, which data?

Step 8: Evaluation (process)

- Process evaluation
 - Are the measures implemented the way we want?
 - Are the measures implemented by everyone?
- Example process evaluation:
 - Measure: start every lesson with a short repetition of percentages in the form of a quiz to increase mathematic achievement
 - Interview students: this is boring, start to detest percentages!
 - Adjust measures: repeat percentages only once a week

datateams

Step 8: Evaluation (effect)

- Effect evaluation:
 - Is the problem solved?
 - Did we reach our goal as stated in step 1?
- Example effect evaluation:
 - Did our measure(s) results in increased mathematics achievement?

*	datateams
Effects (NL)	
Effects level	Instrument(s)
Level 1: satisfaction	Satisfied about support, process and progress'good'; 'fun'
Level 2: knowledge, skills, attitudes	 Knowledge and skills increased significantly 'learnt how to use calculations in Excel'; what + how of qualitative analysis; 'you really need evidence'
Level 3: use of learning	Data use for instruction: e.g., prepare students better for exam (explanation and practice)
Level 4: student achievement	Five out of nine schools solved problem: Significant increase in student achievement

Conclusion and discussion

- Data teams: From 'intuition-based decision making' to 'data-based decision making'
- Change in school culture: "You want to take decisions based on assumptions, that is not the way we work here anymore"
- Support schools in solving problems and achieving goals
- Importance of knowledge sharing within and outside the team
- Need to invest in sustainability from the start: Data use as an organizational routine
- Increased student learning

Primary references

- Campbell, C., & Levin, B. (2009). Using data to support educational improvement. *Educational Assessment, Evaluation and Accountability, 21*(1), 47–65.

 Carlson, D., Borman, G., & Robinson, M. (2011). A multistate district-level cluster randomized trial of the impact of data-driven reform on reading and mathematics achievement. *Educational Evaluation and Policy Analysis, 33*(3), 378–398.
- Desimone, L. M. (2009). Improving impact studies of teacher's professional development: Toward better conceptualizations and measures. Educational Researcher, 38(3), 181–199
 Ebbeler, J., Poortman, C. L., Schildkamp, K., & Pieters, J. M. (2016). Effects of a data use intervention on educators' use of knowledge and skills. Studies in Educational
- Evaluation, 48, 19-31.
- Evaluation, 48, 19-31. Ebbeler, J., Poortman, C. L., Schildkamp, K., & Pieters, J. M. (2016). The effects of a data use intervention on educators' satisfaction and data literacy. Educational Assessment, Evaluation and Accountability. Guskey, T. R. (1998). The age of our accountability. Journal of Staff Development, 19(4), 36–44.
- Kirkpatrick, D. (1996). Great ideas revisited, Techniques for evaluating training pro-grams. Revisiting Kirkpatrick's four-level model. Training & Development, 50(1), 54-
- Lai, M. K., & Schildkamp, K. (2016). In-service Teacher Professional Learning: Use of assessment in data-based decision-making. In G. T. L. Brown & L. R. Harris (Eds.).
- Handbook of Human and Social Conditions in Assessment (pp. 77-94). New York: Routledge.

 McNaughton, S., Lai, M., & Hsaio, S. (2012). Testing the effectiveness of an intervention model based on data use: A replication series across clusters of schools. School Effectiveness and School Improvement, 23(2), 203-228.

 Poortman, C.L., & Schildkamp, K. (2016). Solving student achievement focused problems with a data use intervention for teachers. Teaching and Teacher Education, 60,
- 425-435. Schildkamp, K., & Kuiper, W (2010). Data-informed curriculum reform: Which data, what purposes, and promoting and hindering factors. Teaching and Teacher Education, 26, 482-496.
 Schildkamp, K., & Poortman, C.L. (2015). Factors influencing the functioning of data teams. Teachers College Record.

- Schildkamp, K., Poortman, C. L., & Handlezlats, A. (2016). Data teams for school improvement. School effectiveness and School Improvement, 27(2), 228-254 Schildkamp, K. Karbautzki, L., & Vanhoof, J. (2014). Exploring data use practices around Europe: Identifying enablers and barriers. Studies in Educational Evaluation, 42, 15-24.
- Schildkamp, K., & Ehren, M., & Lai, M.K. (2012). Editorial paper for the special issue on data-based decision making around the world: From policy to practice to results.
- School Effectiveness and School Improvement, 23(2), 123-132.

 Schildkamp, K., Heitink, M., van der Kleij, F., Hoogland, I., Dijkstra, A., Kippers, W. & Veldkamp, B. (2014). Voorwaarden voor effectieve formatieve toetsing. Een praktische review. Enschede: Universiteit Twente.
- proxisting review. Stricting. Online (Eds.) (2013). Data-based decision making in education: challenges and apportunities. Dordrecht: Springer. van Geel, M., Keuning, T., Visscher, A. J., & Fox, J. P. (2016). Assessing the Effects of a School-Wide Data-Based Decision-Making Intervention on Student Achievement Growth in Primary Schools. American educational research journal.
- Vanhoof, J., & Schildkamp, K. (2014). From professional development for data use to 'data use for professional development. Studies in Educational Evaluation, 42, 1-4.